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Announcements

= Assignments
= P2 due Thursday

= Wereserved Soda 271 on Wednesday Feb 17 from 4 to 6. One of the
GSl's will periodically drop in to see if he can provide any
clarifications/assistance. It's a great opportunity to meet other students
who might still be looking for a partner.

= Readings:
= For MDPs / reinforcement learning, we're using an online reading
= Different treatment and notation than the R&N book, beware!
= Lecture version is the standard for this class

Example: Insurance

= Consider the lottery [0.5,$1000; 0.5,$0]
» What is its expected monetary value (EMV)? ($500)

= Whatis its certainty equivalent?
= Monetary value acceptable in lieu of lottery

= $400 for most people

= Difference of $100 is the insurance premium
= There’s an insurance industry because people will pay to

reduce their risk

= If everyone were risk-neutral, no insurance needed!

Example: Insurance

= Because people ascribe different utilities to different
amounts of money, insurance agreements can increase

both parties’ expected utility
Your Utility
Uy

You own acar. Your lottery:
L, =10.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

$0 0
You do not want -$200! -$50 -150
-$200 -1000

Uy(Ly) = 0.2*Uy(-$200) = -200
Uy(-$50) = -150

Example: Insurance

= Because people ascribe different utilities to different
amounts of money, insurance agreements can increase

both parties’ expected utility
You own a car. Your lottery:

Ly =[0.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

You do not want -$200!

Uy(Ly) = 0.2*Uy(-$200) = -200
Uy(-$50) = -150

Insurance company buys risk:
L,=[0.8, $50 ; 0.2, -$150]
i.e., $50 revenue + your Ly

Insurer is risk-neutral:
U(L)=U(EMV(L))
U((Ly) = U(0.8*50 + 0.2*(-150))
U($10) > U($0)

Example: Human Rationality?

= Famous example of Allais (1953)

» A:[0.8,$4k; 0.2,$0]
» B:[1.0,$3k; 0.0,$0]

= C:[0.2,$4k; 0.8,$0]
= D:[0.25,$3k; 0.75,$0]

= Most people preferB> A, C>D
= But if U($0) = 0, then
* B> A = U($3k) > 0.8 U($4k)
= C>D = 0.2 U($4k) > 0.25 U($3k)
equivalently: 0.8 U($4k) > U($3k)




Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must learn to act so as to maximize expected rewards

Environment

Grid World

= The agent lives in a grid

= Walls block the agent’s path 3
= The agent’s actions do not always
go as planned:
= 80% of the time, the action North 2 E
takes the agent North =

(if there is no wall there)

* 10% of the time, North takes the START

agent West; 10% East
= If there is a wall in the direction the
agent would have been taken, the
agent stays put 038
= Small “living” reward each step
= Big rewards come at the end
= Goal: maximize sum of rewards

Markov Decision Processes

= An MDP is defined by:
= Asetofstatesse S
= Asetofactionsae A

E

= A transition function T(s,a,s’)
= Probthatafromsleads to s’
= ie,P(s’|s,a)

= Also called the model

= Areward function R(s, a, ') B
= Sometimes just R(s) or R(s’)
= A start state (or distribution) 1 2 3 4
= Maybe a terminal state
0.8
= MDPs are a family of non- 01 01

deterministic search problems
= Reinforcement learning: MDPs
where we don't know the.
transition or reward functions

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

P(Si41 = 8'|St = s¢, At = ay, St—1 = st—1, At—1,... S0 = 80)

P(Sp41 =5 =81, Ay = ay)

Solving MDPs

= In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal
= Inan MDP, we want an optimal policy n*: S — A
= Apolicy m gives an action for each state
= An optimal policy maximizes expected utility if followed
= Defines a reflex agent

3 —_ | = | =
Optimal policy when 2 1 . f |
R(s, a, s") = -0.03 for all
non-terminals s
TN [ N U i
1 2 3 4

Example Optimal Policies

| | | | | |1

R(s) = -0.03

| | | ]

| |

R(s)=-0.4 R(s) = -2.0




Example: High-Low

= Three card types: 2, 3, 4
= |nfinite deck, twice as many 2’s
= Start with 3 showing

= After each card, you say “high”
or “low”

= New card is flipped

= If you're right, you win the
points shown on the new card

= Ties are no-ops

= If you're wrong, game ends

= Differences from expectimax:
= #1: get rewards as you go
= #2: you might play forever!

High-Low as an MDP

= States: 2, 3, 4, done

= Actions: High, Low

= Model: T(s, a, s):
P(s’=4 | 4, Low) = 1/4
P(s’=3 | 4, Low) = 1/4
P(s'=2| 4, Low) = 1/2
P(s’=done | 4, Low) = 0
P(s'=4 | 4, High) = 1/4
P(s’=3 | 4, High) = 0
P(s’=2 | 4, High) = 0
P(s’=done | 4, High) = 3/4

= Rewards: R(s, a, s'):
= Number shown on s’ if s # s’ and a is “correct”
= 0 otherwise

= Start: 3

Example: High-Low

High ow HWW High Low

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

f e sis a state

(s,a)isa
g-state

/_’ (s,a,s’) called a transition
~ T(s,a.8) = P(ss,a)

R(s,a,s)

Utilities of Sequences

= In order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:
[ryrosr1iro, . ] = [ryrg,rh, s, ]
Sd
[ro,r1,72, -] = [, 74,75, -+ ]
= Theorem: only two ways to define stationary utilities
= Additive utility:
U(lro,r1,72,...)) =mo+r1+7r2+ -+
= Discounted utility:
U(lro,r1,72,--.1) =ro +yr1 +72r2- -
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Infinite Utilities?!

= Problem: infinite state sequences have infinite rewards

NNENE

= Solutions:
= Finite horizon:
= Terminate episodes after a fixed T steps (e.qg. life)
= Gives nonstationary policies (t depends on time left)
= Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

= Discounting: for 0 <y< 1

) L 1=

-4

U([rg,...mo0]) = Z Yy < Rmax/(1 —7)
t=0

= Smaller ymeans smaller “horizon” — shorter term focus
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Discounting

= Typically discount
rewards by y < 1 ¢
each time step
= Sooner rewards
have higher utility
than later rewards
= Also helps the
algorithms -
converge -2
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Optimal Utilities

Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define
optimal policies!

Define the value of a state s:
V'(s) = expected utility starting in s
and acting optimally

Define the value of a g-state (s,a):
Q(s,a) = expected utility starting in s,
taking action a and thereafter

acting optimally N

Define the optimal policy: )
7'(s) = optimal action from state s

g

I N

Recap: Defining MDPs

= Markov decision processes:
= States S .
= Start state s,
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount v)

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards
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The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

Optimal rewards = maximize over first
action and then follow optimal policy

= Formally:
V*(s) = max Q*(s,a)
Q*(s,a) = Z T(s,a,s") [R(,sx, a,s') + "/V*(.s/)]

V*(s) = max > T(s,a, s [R(s, a,s'’) +~ V*(s/)}

s
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Solving MDPs

= We want to find the optimal policy n*

= Proposal 1: modified expectimax search, starting from
each state s:

m*(s) = arg max Q*(s,a)
Q'(5,0) = L T(s,0,8) [R(s,0,8) 47D =

Vi(s) = max Q*(s,a)

Why Not Search Trees?
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= Why not solve with expectimax?

= Problems:
= This tree is usually infinite (why?)
= Same states appear over and over (why?)
= We would search once per state (why?)

= |dea: Value iteration
= Compute optimal values for all states all at
once using successive approximations
= Will be a bottom-up dynamic program
similar in cost to memoization e
= Do all planning offline, no replanning
needed!
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Value Estimates

= Calculate estimates V,’(s)
= Not the optimal value of s!

= The optimal value considering
only next k time steps (k

rewards)

= As k — o, it approaches the
optimal value
= Why:
= If discounting, distant rewards
become negligible
= If terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible
= Otherwise, can get infinite
expected utility and then this
approach actually won’t work

29




