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Announcements

� Assignments

� P2 due Thursday

� We reserved Soda 271 on Wednesday Feb 17 from 4 to 6. One of the 
GSI's will periodically drop in to see if he can provide any 
clarifications/assistance. It's a great opportunity to meet other students 
who might still be looking for a partner.

� Readings:

� For MDPs / reinforcement learning, we’re using an online reading

� Different treatment and notation than the R&N book, beware!

� Lecture version is the standard for this class
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Example: Insurance

� Consider the lottery [0.5,$1000;  0.5,$0]

� What is its expected monetary value (EMV)?  ($500)

� What is its certainty equivalent?
� Monetary value acceptable in lieu of lottery

� $400 for most people

� Difference of $100 is the insurance premium
� There’s an insurance industry because people will pay to 

reduce their risk

� If everyone were risk-neutral, no insurance needed!
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Example: Insurance

� Because people ascribe different utilities to different 
amounts of money, insurance agreements can increase 
both parties’ expected utility

You own a car.  Your lottery: 
LY = [0.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

You do not want -$200!

UY(LY) = 0.2*UY(-$200) = -200
UY(-$50) = -150

Amount
Your Utility

UY

$0 0

-$50 -150

-$200 -1000

Example: Insurance

� Because people ascribe different utilities to different 
amounts of money, insurance agreements can increase 
both parties’ expected utility

You own a car.  Your lottery: 
LY = [0.8, $0 ; 0.2, -$200]
i.e., 20% chance of crashing

You do not want -$200!

UY(LY) = 0.2*UY(-$200) = -200
UY(-$50) = -150

Insurance company buys risk: 
LI = [0.8, $50 ; 0.2, -$150]
i.e., $50 revenue + your LY

Insurer is risk-neutral: 
U(L)=U(EMV(L)) 

UI(LI) = U(0.8*50 + 0.2*(-150))
= U($10) > U($0)

Example: Human Rationality?

� Famous example of Allais (1953)

� A: [0.8,$4k;  0.2,$0]
� B: [1.0,$3k;  0.0,$0]

� C: [0.2,$4k;  0.8,$0]
� D: [0.25,$3k;  0.75,$0]

� Most people prefer B > A, C > D
� But if U($0) = 0, then

� B > A ⇒ U($3k) > 0.8 U($4k)
� C > D ⇒ 0.2 U($4k) > 0.25 U($3k)

equivalently: 0.8 U($4k) > U($3k)
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Reinforcement Learning

� Basic idea:
� Receive feedback in the form of rewards

� Agent’s utility is defined by the reward function

� Must learn to act so as to maximize expected rewards

Grid World

� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not always 
go as planned:

� 80% of the time, the action North 
takes the agent North 
(if there is no wall there)

� 10% of the time, North takes the 
agent West; 10% East

� If there is a wall in the direction the 
agent would have been taken, the 
agent stays put

� Small “living” reward each step

� Big rewards come at the end

� Goal: maximize sum of rewards

Markov Decision Processes

� An MDP is defined by:
� A set of states s ∈ S
� A set of actions a ∈ A
� A transition function T(s,a,s’)

� Prob that a from s leads to s’
� i.e., P(s’ | s,a)
� Also called the model

� A reward function R(s, a, s’) 
� Sometimes just R(s) or R(s’)

� A start state (or distribution)
� Maybe a terminal state

� MDPs are a family of non-
deterministic search problems
� Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions
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What is Markov about MDPs?

� Andrey Markov (1856-1922)

� “Markov” generally means that given 
the present state, the future and the 
past are independent

� For Markov decision processes, 
“Markov” means:

Solving MDPs

� In deterministic single-agent search problems, want an 
optimal plan, or sequence of actions, from start to a goal

� In an MDP, we want an optimal policy π*: S → A
� A policy π gives an action for each state

� An optimal policy maximizes expected utility if followed

� Defines a reflex agent

Optimal policy when 
R(s, a, s’) = -0.03 for all 
non-terminals s

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01
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Example: High-Low

� Three card types: 2, 3, 4
� Infinite deck, twice as many 2’s
� Start with 3 showing
� After each card, you say “high” 

or “low”
� New card is flipped
� If you’re right, you win the 

points shown on the new card
� Ties are no-ops
� If you’re wrong, game ends

� Differences from expectimax: 
� #1: get rewards as you go
� #2: you might play forever!
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High-Low as an MDP

� States: 2, 3, 4, done
� Actions: High, Low
� Model: T(s, a, s’):

� P(s’=4 | 4, Low) = 1/4 
� P(s’=3 | 4, Low) = 1/4
� P(s’=2 | 4, Low) = 1/2
� P(s’=done | 4, Low) = 0
� P(s’=4 | 4, High) = 1/4 
� P(s’=3 | 4, High) = 0
� P(s’=2 | 4, High) = 0
� P(s’=done | 4, High) = 3/4
� …

� Rewards: R(s, a, s’):
� Number shown on s’ if s ≠ s’ and a is “correct”
� 0 otherwise

� Start: 3
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Example: High-Low

Low High

High Low High Low High Low

, Low , High

T = 0.5, 
R = 2

T = 0.25, 
R = 3

T = 0, 
R = 4

T = 0.25, 
R = 0
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MDP Search Trees

� Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a 
q-state
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Utilities of Sequences

� In order to formalize optimality of a policy, need to 
understand utilities of sequences of rewards

� Typically consider stationary preferences:

� Theorem: only two ways to define stationary utilities
� Additive utility:

� Discounted utility:

20

Infinite Utilities?!

� Problem: infinite state sequences have infinite rewards

� Solutions:
� Finite horizon:

� Terminate episodes after a fixed T steps (e.g. life)

� Gives nonstationary policies (π depends on time left)

� Absorbing state: guarantee that for every policy, a terminal state 
will eventually be reached (like “done” for High-Low)

� Discounting: for 0 < γ < 1

� Smaller γ means smaller “horizon” – shorter term focus
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Discounting

� Typically discount 
rewards by γ < 1 
each time step

� Sooner rewards 
have higher utility 
than later rewards

� Also helps the 
algorithms 
converge
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Recap: Defining MDPs

� Markov decision processes:
� States S
� Start state s0

� Actions A
� Transitions P(s’|s,a) (or T(s,a,s’))
� Rewards R(s,a,s’) (and discount γ)

� MDP quantities so far:
� Policy = Choice of action for each state
� Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’

s’
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Optimal Utilities

� Fundamental operation: compute 
the values (optimal expectimax 
utilities) of states s

� Why?  Optimal values define 
optimal policies!

� Define the value of a state s:
V*(s) = expected utility starting in s 

and acting optimally

� Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s, 

taking action a and thereafter 
acting optimally

� Define the optimal policy:
π*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’
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The Bellman Equations

� Definition of “optimal utility” leads to a 
simple one-step lookahead relationship 
amongst optimal utility values:

Optimal rewards = maximize over first 
action and then follow optimal policy

� Formally:

a

s

s, a

s,a,s’

s’
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Solving MDPs

� We want to find the optimal policy π*

� Proposal 1: modified expectimax search, starting from 
each state s:

a

s

s, a

s,a,s’

s’
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Why Not Search Trees?

� Why not solve with expectimax?

� Problems:
� This tree is usually infinite (why?)
� Same states appear over and over (why?)
� We would search once per state (why?)

� Idea: Value iteration
� Compute optimal values for all states all at 

once using successive approximations
� Will be a bottom-up dynamic program 

similar in cost to memoization
� Do all planning offline, no replanning 

needed!
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Value Estimates

� Calculate estimates Vk
*(s)

� Not the optimal value of s!
� The optimal value considering 

only next k time steps (k 
rewards)

� As k → ∞, it approaches the 
optimal value

� Why:
� If discounting, distant rewards 

become negligible
� If terminal states reachable from 

everywhere, fraction of episodes 
not ending becomes negligible

� Otherwise, can get infinite 
expected utility and then this 
approach actually won’t work
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